# Motion and Math

• Intermediate

### Course Description:

This course contains 10 lessons.
Through these 10 lessons, students will integrate math concepts into programming NAO to dance.

## Standards Covered

### CCSS.MATH.PRACTICE.MP2

Reason abstractly and quantitatively.

### CCSS.MATH.PRACTICE.MP3

Construct viable arguments and critique the reasoning of others.

### CCSS.MATH.CONTENT.7.RP.A.1

Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.

### CCSS.MATH.CONTENT.6.RP.A.1

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

### CCSS.MATH.CONTENT.6.NS.A.1

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) ÷ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?.

### CCSS.MATH.CONTENT.6.RP.A.3

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

### CCSS.MATH.CONTENT.6.SP.B.5

Summarize numerical data sets in relation to their context.

### CCSS.MATH.CONTENT.6.NS.C.5

Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

### CCSS.MATH.CONTENT.7.RP.A.2

Recognize and represent proportional relationships between quantities.

### CCSS.MATH.CONTENT.6.NS.C.6

Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

### CCSS.MATH.CONTENT.6.RP.A.2

Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid $75 for 15 hamburgers, which is a rate of$5 per hamburger." (Expectations for unit rates in this grade are limited to non-complex fractions.)

### CCSS.MATH.CONTENT.6.NS.C.8

Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

### CCSS.MATH.CONTENT.6.NS.B.3

Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

### CCSS.MATH.CONTENT.6.NS.B.4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2)..

### CCSS.MATH.CONTENT.7.NS.A.1

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

### CCSS.MATH.PRACTICE.MP1

Make sense of problems and persevere in solving them.

### CCSS.MATH.PRACTICE.MP4

Model with mathematics.